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We consider the evolution of an isolated elliptical vortex in a weakly dissipative fluid. 
It is shown computationally that a spatially smooth vortex relaxes inviscidly towards 
axisymmetry on a circulation timescale as the result of filament generation. Heu- 
ristically, we derive a simple geometrical formula relating the rate of change of the 
aspect ratio of a particular vorticity contour to its orientation relative to the 
streamlines (where the orientation is defined through second-order moments). 
Computational evidence obtained with diagnostic algorithms validates the formula. 
By considering streamlines in a corotating frame and applying the new formula, we 
obtain a detailed kinematic understanding of the vortex’s decay to its final state 
through a primary and a secondary breaking. The circulation transported into the 
filaments although a small fraction of the total, breaks the symmetry and is the chief 
cause of axisymmetrization. 

1. Introduction 
In  the last decade there have been numerous numerical studies of freely evolving 

and forced nearly inviscid hydrodynamic flows in two dimensions. McWilliams (1984) 
showed that unforced flows and initially power-law spectra with random phases 
rapidly evolved into many isolated vortex regions with non-Gaussian statistics. Yet 
there is virtually no real understanding of two processes that play an essential role 
in the long-time evolution of turbulent-like states, namely the evolution towards 
axisymmetry of isolated, initially non-axisymmetric states and the merger of pairs of 
isolated vorticity regions. In a series of four papers we will clarify these processes by 
carefully analysing high-resolution simulations (up to 2562) with a pseudospectral 
code. 

In  this first paper we examine the evolution of isolated spatially smooth ellip- 
tical vorticity distributions (or elliptical vortices for short). The choice of the 
elliptical shape is motivated by a number of mathematical and physical facts. 
The elliptical uniform (tophat) vortex (Kirchhoffs elliptical vortex) is a steady-state 
solution of the Euler equations (Lamb 1932). Hernan & Jimenez (1982) applied 
image-processing methods and found that near-elliptical vorticity distributions 
evolve and merge in laboratory experiments with free shear layers. Furthermore, a 
uniform vorticity distribution maintains an elliptical shape in simple time-varying 
strain fields (Kida 1981). The elliptical vorticity distribution also provides mathe- 
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matically convenient approximations. Also, we find that our results apply to near- 
elliptical vortices as well. Since Kirchhoff s ellipse is linearly stable for aspect ratios 
less than three, one might expect corresponding smooth vorticity distributions to be 
near-steady states evolving slowly towards axisymmetry as a result of weak 
dissipation. However, our essential conclusion is that there is an inviscid trend 
towards axisymmetry occurring during the first half revolution of the vortex. It 
occurs as a consequence of the generation of vortex filaments which break the 
elliptical symmetry. This process can be motivated easily by comparing the vorticity 
and a corotating stream function. 

The second paper will deal with the symmetric merger of two identical vorticity 
regions. We show that merger, when it occurs, results from a similar axisymmetri- 
zation process caused by the same mechanism as for a single vortex. However, the 
merger process causes a much stronger enstrophy cascade. Furthermore, we have 
obtained a vital clarification of the causes and conditions for merger by comparing 
results from a Hamiltonian moment model (Melander, Styczek & Zabusky 1984; 
Melander, Zabusky & Styczek 1986) with pseudospectral calculations. The former is 
an integrable system for two identical vortex regions. Computationally observed 
pulsating states (Zabusky, Hughes and Roberts 1979) are also explained in this 
context. 

The third paper will be devoted to the generic merger problem, that is, the merger 
of two vortices of different shape, circulation, spatial extent and peak vorticity. 

The last paper in the series will examine two dissipation mechanisms v, A and v4 A2,  
where the first yields the Naviedtokes equations and the second is a typical 
' hyperviscosity ' mechanism. We conclude that the large-scale results presented in 
the first three papers are essentially independent of the nature of the dissipation, 
provided it is sufficiently weak. Actually, for finite-duration runs, the hyperviscosity 
code allows a higher effective Reynolds number without introducing significant 
spurious effects, and vorticity gradient intensification is treated better than with the 
Navier-Stokes code which shows stronger Gibbs-phenomena oscillations. 

In $2 of the present paper, we describe the initial vorticity distribution and the 
algorithm and diagnostics used to study the evolutions. In  $3 we present an 
axisymmetrization principle, governing the inviscid dynamics of the vortex. As 
described in $4, this principle combined with a knowledge of the corotating 
stream-function contours yields a detailed kinematic understanding of the relaxation 
towards axisymmetry . We also describe the observed gradient intensification and 
spiral structure in the vortex core. Section 5 deals with the dependence on the initial 
conditions and generalizations to geostrophic vortices (y  9 0 in (8)). 

2. Initial vorticity distribution, algorithms and diagnostics 
2.1. Localized initial vorticity distribution 

We specify the initial vorticity distribution o( r ,  4, 0 )  as an idealized smooth distri- 
bution of compact support, and with equivorticity lines that are concentric ellipses 
of a common orientation and aspect ratio. Outside the ellipse r = Ro(#) there is no 
vorticity and inside r = Ri(#) the vorticity is uniform o = up, see figure 1 (a).  The 
relative steepness of the vorticity gradient is controlled by the parameter 
S = [Ro-Ri]/Ro, (where Kirchhoffs vortex is obtained as 8 tends to zero). We refer 
to the initial vorticity distribution as V(8,  up, a, a ) ,  where a and b are the major and 
minor axes of the outermost ellipse r = Ro(#). 



Axisymmetrization of an isolated two-dimensional vortex 139 

(b) 1.0 . 

0.8 

0.6 

f 

" I  0.4 

0.2 

I 

0 0.2 0.4 0.6 0.8 
r 

FIGURE 1. (a) Sketch of the initial vorticity distribution. (b)  The profile function (2) and the 
piecewise linear approximation (4). 

We have found it convenient to specify w(r,  4 , O )  as a distribution with a monotonic 
profile function f (r), r >, 0 

( r  Ri), 
(Ri < r < R,), L (R, < r ) .  

$1 = u p  1 -.m--Ri)/(R:-Ri)l (1) 

We select our profile function f from the one-parameter family cf, ; K > 0) where 

f,(r) = exp[-Kr-lexp(l/(r-l))], 0 < r < 1. (2) 

This function smoothly connects levels 0 and 1 at r = 0 and r = 1, and all its 
derivatives vanish at these points. A suitable choice of K is obtained from the natural 
requirement that f(0.5) = 0.5, this implies 

(3) K = +(exp 2) (In 2) x 2.56085. 

With this value of K we find f '(0.5) = In 8 x 2.08, and approximately 90 yo of the 
variation of the functionf occurs within the interval [0.25,0.75] (see figure 1). 

We may reasonably approximate the profile function fJ r )  by the piecewise linear 
function 

(r  4 a,, 1:: (i < r ) .  
I ( r )  = 2r-(+), (a < r < i), (4 1 

This formula is useful for calculating an approximation to the total circulation of the 
initial vorticity distribution 

r= SSwdzdy=Cir[V(b,o,,a,b)] =wPabVol[V(6,1,1,1)], (5) 
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where Vol denotes the dimensionless volume of the tophat V(6,1,1,1). Since 
V(6,1,1,1) is axisymmetric we find 
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r = wp abn J - R(lJ2 dg, 
0 

where R(g) is the radius of the circular cross-section of V(6, 1, 1, l)  at level g. This 
radius is found using the approximation (4), thus 

r= upnab [1-6(g+i)/2l2dg, 

= upnab(l -6+(1362)/48). 
1: 

Hence, the parameters 6, up, a and b can be easily changed subject to the constraint 
that r is maintained. The error in this approximation increases with 6. At 6 = 1 the 
error is 1.5 yo. 

2.2. Numerical simulation algorithm 
The simulations are made with a pseudospectral code (Haidvogel 1985 ; McWilliams 
1984) which solves 

~ , K + J ( @ , K )  = [v2A-v,A2]w, (7) 
where 

in the periodic domain [-n,n]x[--x,n], where J ( $ , K )  =a,@a,~-a,@’a,~ and 
y-’ is a constant called the Rossby deformation radius. Conventionally, K is called 
the potential vorticity and w is called the relative vorticity. The stream function @ 
is normalized such that its area integral over the box vanishes. This has no physical 
importance since the velocity field is unaffected. For numerical reasons a uniform 
background is added to the vorticity field such that the box has zero circulation. This 
background vorticity has no influence on the evolution of the physical quantities as 
discussed in the Appendix. All runs in $53 and 4 are with y = 0. 

In (6), v2 Aw is the Navier-Stokes viscosity term and v, A2w is a hyperviscosity 
term. In  this paper we discuss mainly v2 = 0 and v, finite, for this allows a higher 
effective Reynolds number, Re, = r 2 / v , w p ,  on a given mesh as will be discussed in 
a future paper. Our simulations include 1282/2 and 2562/2 independent modes 
corresponding to 1282 and 2562 lattice intervals, respectively. 

2.3. Diagnostics 
To quantify the nonlinear evolutions, we use a set of diagnostic algorithms developed 
by Overman (Overman & Zabusky 1984). In  essence this package constructs contours 
of a function defined on a finite mesh by specifying an apriori level. The contour, 
which in our case is always closed, is represented by two periodic cubic splines 
[ ~ ( s ) ,  y(s)] where s is the arclength. This allows us to calculate moments of the domain 
bounded by the contour. In  particular we calculate the second-order moments, which 
allows us to define an aspect ratio and orientation of an approximating ellipse, that 
we call the diagnostic ellipse of the contour. Furthermore, the package calculates the 
velocity components normal and tangential to the contour, as well as the maximum 
gradient of any function along the contour. 
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FIGURE 2. Sketch showing -, a vorticity contour and * . * a ,  a nearby streamline. (a) #d > 0, 
(b )  q5d < 0. The arrows indicate the velocity field aa obtained from the nearby streamline. 

3. The axisymmetrization principle for inviscid vortex dynamics 
In  this section we quantify the axisymmetrization process by calculating the aspect 

ratio A, of the diagnostic ellipses at different vorticity levels. We provide substantial 
computational evidence for the inviscid nature of the process. Finally, we derive a 
simple kinematic principle which the process obeys. 

The basis for the discussion is the evolution of an initial V( 1,20,1.6,0.8) vorticity 
distribution as shown in figure 8. In this figure the frames for t < 3.0 show the result 
of a 2562-mesh calculation with v8 = y = 0 and v4 = 0.3125 x lo-'. For t > 3.0 the 
pictures are obtained from a similar 1282-mesh calculation with v4 = 5.0 x lo-'. 

3.1. The inviecid nature of axiymmetrization 
In figure 3(a-c) the evolution of A, at three different vorticity levels 
G = 5.0,10.0,15.0 is shown. Also displayed is the aspect ratio A, of a streamline inside 
the vortex, 3 = -3.0. We clearly observe a rapid initial decay in all aspect ratios. 
After the initial decay, A, oscillates with a frequency and amplitude that is strongly 
dependent on the vorticity level G. The aspect ratio of the streamline does not show 
similar fluctuations. 

The fastest timescale for the relaxation towards axisymmetry is somewhat smaller 
than unity. For example, 7, = -A,/&, x 0.8 for G = 5.0 at t = 0.75. The timescale 
related to dissipation is much larger. During the simulation the energy decay rate 
T~ E E/,@ remains almost constant T~ x 1.7 x lo5. Thus the energy is nearly constant. 
A more sensitive dissipation timescale is obtained from the decay of the enstrophy 
2 = JoPdxdy. Initially T~ = -Z/B = 7.0 x lo6 and decreases to a minimum of 
T~ = 161 at t = 1.775. Afterwards it  increases slowly to T~ = 304 at the end of the 
simulation. Note, the pseudospectral algorithm conserves the global vorticity 
centroid and the total circulation exactly. Furthermore M = J o(x2 + y2) dx dy is 
conserved when y = v2 = 0 and v4 + 0, just as with the Euler equations. 

In  order to further substantiate our claim that the axisymmetrization process is 
inviscid, we have investigated the evolution of V (  1, 20,l .6,0.8) under the influence 
of different dissipations. Figure 4 compares the evolution ~ of A, at 0 = 10.0 during 
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FIGURE 3. Evolution of -, h,(Z,t);  ---- , h,(t); - . . . .  , &(G,t) for the initial state 
V( 1,20,1.6,0.8), corresponding to the physical plane results shown in figure 8. $,, is measured in 
degrees. (a)-(c) show the diagnostics for a calculation on a 256, mesh with v, = 0 and 
v4 = 0.3125 x lo-’. Note, A, is obtained from 3 = -3, close to the extremity of the vortex 
(min $ = -4.9). (a) G = 5, ( b )  i3 = 10, (c) 53 = 15. (d)-df) show the diagnostics for the same 
calculation on a 12S8 mesh with v, = 0 and v, = 5.0 x lo-’. ( d )  z j  = 5, (e) z = 10, cf)  v = 15. 

three different simulations. The solid curve is obtained from figure 3 ( b ) ,  whereas the 
dashed curve represents the 1282-mesh calculation with u4 = 5.0 x lo-’, a 16 times 
increase in v4. If the dissipation was the essential mechanism then 7, would be 16 
times smaller. This is clearly not the case - the main relaxation towards axisymmetry 
occurs on the same timescale. Particularly we observe exactly the same initial decay 
of A,. The dotted curve originates from a 12f~4~-mesh calculation with v4 = 0 and 
v2 = 3.8 x Again we observe the same overall decay in A,. Finally we remark 
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FIGURE 4. The evolution A,( 10, t )  for V( 1,20,1.6,0.8) is shown under the influence of different 
dissipations. -, v4 = 0.3125 x lo-', v2 = 0; ----, vP = 5.0 x lo-', vP = 0 ;  * * * * . 9 v4 =o,  
v2 = 3.8 x 10-4. 

that the periodic boundary conditions applied in the pseudospectral code have no 
significant influence on the process. On the basis of the above discussion, we conclude 
that the axisymmetrization is an inviscid mechanism. 

3.2. Heuristic derivation of the axisymmetrimtion principle 
We now show that the axisymmetrization, of an isolated nearly elliptical vortex in 
an inviscid fluid can be related to the relative orientation of equivorticity lines and 
streamlines. As seen in figure 8 the low-amplitude vorticity contours develop a 
complicated structure including long spiral filaments. However, the contours a t  
higher amplitudes remain nearly elliptical. Let us consider one of these contours, 
0 = w. 

Using second-order moments of the domain enclosed by the vorticity contour 
w = 0, we obtain an aspect ratio A,,,(Z, t )  and an orientation q5J3, t ) .  Similarly we 
define A+($, t )  and &($, t )  for a closed streamline. From numerical simulations like 
figure 8 we have found that for streamlines in the vicinity of an assigned vorticity 
contour A ($ , t )  and q5+(T,t) are almost independent of 3. For simplicity in the 

independent of 3. 
following t euristic derivation, we shall assume A+($, t )  = A+( t )  and $+($, t )  = q5+(t), 

The streamfunction $ is given in terms of w by 

which is the inversion of (8), (y  = 0). That is $ is obtained as a weighted integral 
over the vorticity field o. If o ( x ,  y )  has the mirror symmetries of an ellipse, it follows 
from (9) that $ has the same symmetries. This applies to the initial conditions in 
figure 8. As time increases, the mirror symmetries of the vorticity field are broken 
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by the formation of filaments. Thus at  later times we consider the vorticity field as 
the superposition of a symmetric component us, with the symmetries of an ellipse, 
and an asymmetric component w,: 

w ( z ,  Y) = w,(x, Y) + w,(z, Y)* (10) 

It follows from the linearity of the integral in (9) that $ can also be viewed as the 
sum ,pf symmetric and asymmetric components 

$(z, Y) = $s(x,  Y) + $a(z, Y). (11) 

Clearly at t = 0 in figure 8 we have w = w, and $ = $,. We observed from the 
evolution pictures, that at  high-vorticity amplitudes the asymmetric term, w,, in (10) 
is negligible; hence it is reasonable to assume that $,(i3, t )  x $ws(i3, t )  a t  such 
amplitudes. Although w, has little influence on $w at high-vorticity amplitudes, w, 
has a significant influence on $, as is evidenced through (9) ; this in turn produces 
an effect on $$ through (11) .  

In figure 8 at t = 0.5 the filaments which are forming at the lower-vorticity contours 
are accounted for by w,, hence these filaments cause $,(G,t) to depart from $$( t ) .  
In  fact $JG, 0.5) > $$(0.5) at high-vorticity contours. This consideration justifies 
the introduction of the difference angle $d : 

$d@, t ,  $,@, t ,  - $ @ ( t ) *  (12) 

In  figure 2 we investigate the consequences of $d positive and $d negative. The solid 
curve represents a high-amplitude vorticity contour and the dotted curve is a nearby 
streamline. Since we have already shown that axisymmetrization is an inviscid 
process, we may assume D, w = 0 (the vorticity of each fluid particle is conserved) ; 
the velocity field along the vorticity contour thereby yields the short-time defor- 
mation of the contour. The velocity fields along w = Ts can be constructed from the 
streamlines. This construction becomes particularly simple with the assumptions 
A$($, t )  = Ap(t)  and &($, t )  = $$. For example in figure 2 (a), since the streamline 
through A (not shown) has the same slope as the streamline through point B, the 
direction of the velocity vector at point A is obtained as the tangent to the streamline 
at point B. With further evolution the major axis of the elliptical vorticity contour 
will decrease due to the fact that the projection of the velocity vector a t  A on the 
major axis is negative. Similarly, the minor axis will increase. Hence the aspect ratio 
h, will decrease, that is d, A, is negative when $d is positive. A similar argument using 
figure 2 (b) shows d, A, > 0 when $a < 0. From the above, we derive the inequality 

dt h,(w, t )  $d(a, t )  < 0. (13) 

This is the axisymmetrization principle for a nearly elliptical vorticity distribution 
and as described in the next section it is essential for understanding the axisym- 
metrization process. 

We validate (13) by examining the diagnostics A,, (bd(i3, t )  and A,(t)  contained in 
the panels of figure 3. These are obtained for i3 = 5,10,15 from two simulations 
showing the evolution of V(  1,20,1.6,0.8). The axisymmetrization principle (13) 
predicts the extrema of A,(Tj, *) coincide in time with the zeros of $a@, *). Figure 3 
shows this prediction is true within a very good approximation. A small discrepancy 
is seen at  t = 0.5 for &i = 15.0, this discrepancy might be due to the coarse 
time-sampling of output results taken at At = 0.125. 

We shall now derive an approximation for d,  A,@, t )  at high-vorticity contours. In 
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the neighbourhood of the vorticity contour w = G  we approximate the stream 
function by a quadratic polynomial 

(14) ?w, y )  = Y ( X ,  Y )  = c1 x2 + c2 X Y  + c3 Y 2 ,  

where the constants cl, c2 and c, are related to q5, and A, in the following way: 

c1 = c[cos2 q5, + A$ sin2 

c, = c[(l-A$) Sin2q5,l. 

c, = c[sin2 q5, + A$ cos2 $,I, 
Here c is a constant determined from G 

4 1  +A$),  
- m = - A y = - 2  

or c = -@(l +A$)-'. 

In  order to calculate the evolution of A, we defke moments of the region D enclosed 
by the vorticity contour w = 0, 

Jmn = Jb xmyn dg. 

Using the approximation (14) we find 

d, Jmn = JD [ m ~ ~ - ~ y ~ Y ~ - n x ~ y ~ - ~ Y , J d a ,  

= -2c 1 nJm+l,n-i +c2(m-n)  Jmn+2m3 Jm-lpn+l. (16) 

For an ellipse with aspect ratio A, orientation q5 and area A we have 

, (17) 
A2(A2 + (1 - A 2 )  sin2 9) 

4xA 
J20 = 

(20) 
A2 which implies dt(JBo + P2) = d, (A, + A, '). 

On the other hand (1 6) yields 

dt(Po+JO2) = ~ C , ( J ~ ~ - J O ~ ) + ~ ( C , - C ~ ) J ~ ~ .  (21) 

We substitute (17)-(19) into (21), equate the right-hand sides of (20) and (21) and 
obtain 

d,A, = 2e(l-A$)A,sin2(q5,-q5@), 

We have compared this approximation with d,  A, obtained by differentiating the 
cubic-spline interpolation of A, shown in figure 3(a,  b). The comparison is shown in 
figure 5 for 0 = 15.0 and 10.0. The dotted curve represents the approximation (22). 
Note that for 0 = 5 the extrema disagree in amplitude by a factor three. 
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FIGURE 5. Comparison of ----, the approximation to dt Am(@ t )  given in (22) with -, the 
true value as obtained by spline differentiation of A in figure 3; (a) i3 = 15, (a) V = 10. 
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FIQURE 6. Variation of the angular vekcity Sa (degrees/time unit) of the contours ----, = 5; 
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to figure 3a-c). 

FIQURE 7. Composite sketch of -, the corotating stream function $c and ----, the vorticity 
field. Indicated are two saddle points A,  and A,, three centres B,, B,, C and the separatrix lines 
connecting the saddle points. 

4. Kinematic description of the relaxation process 
In  this section we apply the axisymmetrization principle to explain the evolution 

of the V(1,20,1.6,0.8) vortex. The aspect ratio clearly is in the stable regime of the 
Kirchhoff vortices. However, the dynamics are very different. 

A critical understanding of the vortex’s deformation is obtained by examining 
contours of a corotating stream function 

$c = $+W, ( X 2 f Y 2 ) 7  (23) 

where Q(t) is an appropriate angular velocity discussed below. The choice of SZ is 
important, for streamfunctions observed in different reference frames yield different 
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9 c  t 0 

FIGURE 8. The evolution of V(l,20,1.6,0.8) at t = 0,0.5,  2, 3 , 4  and 8. Column 1 shows w ;  column 
2 $c; column 3 @; For t Q 3 the pictures show the result of a 2562-mesh calculation with 
v4 = 0.3125 x lop7. For t 2 3 the mesh is 1 2 P  and v4 = 5.0 x 



Axisymmetrization of an isolated two-dimensional vortex 149 

views, as described by Perry, Chong & Lim (1982). We may consider two possibilities: 
the angular velocity of a mid-level 75-ellipse, or a mid-level $-ellipse (the lower-lying 
vorticity contours tend to break and are therefore not useful). The latter is preferred 
since it results from a weighted average of the vorticity field, and therefore shows 
much smaller fluctuations during the evolution, as shown in figure 6. Note that the 
period of the oscillations of D in figure 6 is smaller for higher-vorticity contours and 
agree with those of A, in figure 3. Hence, we define D as the instantaneous angular 
velocity 

(24) W )  = 4&* 
Figure 7 shows a composite sketch of w and $c for the V( 1,20,1.6,0.8) at t = 0, 

where 0 = 3.14. We see five stagnation points: A, and A, are saddle points, B, and 
B, are centres of clockwise circulation created by transforming to a rotating frame, 
while C is the original centre of counterclockwise circulation. The saddle points are 
connected by four separatrices: the inner ones, i, and i, and the outer ones, o1 and 
0,. The domains surrounding the centres B,, C and B, which are bounded by the 
nearest separatrices, we designate a,, V and a,, where we call B1 and 1, ‘ghost 
vortices’. These vanish as the aspect ratio of the vorticity core approaches unity. We 
have observed that the location of the separatrices and the stagnation points changes 
slowly compared to the bulk rotation, which is almost constant in time. Therefore 
the streamlines in the corotating frame are useful for describing the differential 
deformation of the vortex. 

The angle $d can be non-zero only when the vorticity field as a whole is distorted 
from the mirror symmetry of an ellipse. Therefore we again describe the vorticity 
field as a superposition of a symmetric and an asymmetric field, 

0 = w*+w, (+W,,,. (25) 

The dominant asymmetric term, wL, I, is caused by the filaments as seen by inspection 
of the vorticity field at t = 0.5, see figure 8 ( d ) .  This accounts for the overall nature 
of the relaxation process, displayed in the aspect ratio of the streamlines h*(t). 
Component wa, results from the distortion from elliptical symmetry in the core of 
the vortex. This distortion is a secondary effect caused by differential rotation and 
gradient intensification and is responsible for the small-amplitude oscillations in 
A,@, t ) ,  see figure 3 (a-c). 

4.1. The injuence of the $laments on the core 

We now present a qualitative discussion of the effects of asymmetries in the vortex 
field on the evolution of the vorticity. It is convenient to describe the effects over 
approximately four ‘ eddy-rotation ’ times in four phases. 

At t = 0, see figure 8 ( b ) ,  the saddle points A, and A, are located along the major 
axis and we observe, crucially, that they lie inside the region of vorticity. Thus the 
vorticity outside the region V will convect away and form filaments. Only the lower 
quarter of the vorticity contours will be affected by the shedding, while the higher 
contours will remain almost elliptical since they are contained in V .  This prediction 
based on figure 7 agrees with the actual vorticity field at t = 0.5, see figure 8(d ) .  At 
t = 0.5 the vortex is shedding filaments and a smaller core is forming. Comparison 
of the vorticity field with the $-,-field illustrates how the filaments are wrapping 
around the regions and 1,. Through the first time unit the filaments contribute 
strongly to the asymmetric component of the vorticity field. Hence the diagnostic 
ellipses of the $-streamlines lag slightly behind the higher-vorticity contours, a 
consequence of the smoothing implied in (9). Thus the angle q5d > 0. Figure 3 shows 
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that #d becomes as large as 12’. According to the axisymmetrization principle (13) 
the aspect ratio A, must decrease rapidly. As seen in figure 3 (b) A,( 10.0) drops from 
2.0 to 1.3 within a quarter of revolution (t = 0.5). Meanwhile the aspect ratio of the 
+-streamlines decreases from 1.32 to 1.23. 

During the second phase (from t x 1.5 to t x 2.5) A,, is approximately constant, 
because the filaments hardly contribute to the asymmetry. Namely, they are situated 
almost symmetrically around the midpoints of the outer separatrices 0, and o,, see 
figure S ( 9 ) .  The shedding of vorticity has stopped because the core is entirely 
contained in % and most of the low-amplitude vorticity is now in the filaments. Note 
that the vorticity gradient is larger along the outer side of the filaments than along 
the inner. The reason is that the vorticity outside the outer separatrices is convected 
faster into the filaments than the vorticity inside Bl and B2. Also note that the 
filaments maintain a positive curvature, that is they do not show any sign of ‘ roll-up’ 
because of the strain induced by the core. Furthermore, the vorticity tends to zero 
slowly near the tip of the filaments causing the phenomenon of ‘tip ’ roll-up to occur 
on a slower timescale than in contour dynamical simulations like figure 9 of Overman 
& Zabusky (1982) which shows an indication of tip roll-up. Note that the transport 
of vorticity in the filaments is essentially an inviscid process, since the circulation 
is conserved and the effect of dissipation is to spread the vorticity normal to the axes 
of the filaments. 

The third phase of the evolution lasts from t x 2.5 to t x 4.0. The filaments are 
now out of their previous ‘symmetric ’ position and do again contribute to a non-zero 
#d. However, the new position of the arms yields a negative $d and thus A,, increases. 
During this phase the stretching of the filaments becomes complicated. As seen by 
comparing figures S(j and k), part of the filaments are trapped inside g1 and h,, 
resulting in a concentration of vorticity near stagnation points A, and A,. This 
vorticity reattaches to the core and reverses the propagation direction in the 
corotating frame as the particles are convected along i ,  and i,. 

The fourth phase begins at  t % 4.0 when the non-reattached parts of the filaments 
are convected so far around the core that they contribute to a positive $d leading 
to another relaxation towards axisymmetry. A weak secondary breaking of the core 
follows because the saddlepoints A, and A, have moved slightly into the core, 
compare figures 8 ( m  and n).  Note that figures 8(m-r) are the result of a 
128, mesh calculation and therefore the gradients are less steep than in the previous 
figures. Figure 8(p) shows the vortex at  t = 8.0, where A,, = 1.05 and 

For any weakly dissipative fluid we believe the state in figure 8(p) is close to the 
final one, which is a nearly circular core surrounded by a nearly concentric ring. 
Figure 9 shows cross-sections of the vortex along the major and minor axes. The core 
has a steeper gradient along the lower-vorticity contours than along the higher ones. 
This follows from the fact that most of the fluid particles carrying small-amplitude 
vorticity at  t = 8.0 have been convected away from the core and into the ring. Note 
that in recent calculations with a contour dynamical algorithm (v, = up = 0) 
and comparable initial conditions, D. G. Dritschel (1986, private communication) 
observed similar phenomena and the near-concentric ring was composed of small- 
scale low-amplitude filaments in a spiral pattern. 

A,(10) = 1.1. 

4.2. The efj’ects of asymmetry in the vortex core 

As seen in figure 8(g) the vortex core is slightly distorted from elliptical symmetry 
by the presence of inward-spiralling steep-gradient regions. These are caused by a 
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FIQURE 9. Cross-sections along . . . * , the major and -, minor axes of the vorticity field at 
t = 8 in figure 8. 

0 0.5 1 .o 1.5 
I 

FIQURE 10. The maximum gradient along a vorticity contour Max IVw(s)l, for the evolution of 
Y(1,20,1.6,0.8) on a 2562 mesh (corresponding to figure 3a-c). -, w = 3; ---- , 0 = 5 ;  - . . . . - ,  - 
- = 10; -.-.-, ijj = 15. 

differential rotation in region V of the core which is due to the variation of the 
stream-function profiles. This effect is responsible for the he-scale oscillations of A, 
whose frequency increases with w as seen in figure 3. The quantitative aspects of this 
correlation are not fully understood. (Note, the filaments cannot cause the frequency 
to be strongly dependent on the contour level as evidenced by (9)). 

Just as with filament formation, convection of vorticity along separatrix lines is 
the main cause of the observed vorticity gradient intensification and it occurs at the 
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FIQURE 11. Evolution of -, A,(lO,t), ----, AJt) and . . a * *  , &(lO, t )  for the initial state 
V(1, 20,1.44,0.4) on a 12P mesh with vq = 5.0 x lo-', corresponding to the physical plane results 
shown in figure 12. (Note A,, is obtained from 3 = - 1.2, close to the extremity of the vortex). Also 
shown are evolutions of A,( 10, t )  - x -, V(0.5,20,1.44,0.4) and -A-, V(0.2,20,1.44,0.4) on a 
256* mesh with v2 = 0 and v4 = 0.3125 x lo-', corresponding to columns 2 and 3 in figure 12. 

lower contours. Until t x 0.5 the gradient intensified regions contribute to in the 
same way as the filaments. However, at later times the high-gradient regions are 
mostly contained in W and therefore convection (differential rotation) in the core gives 
rise to a spiral gradient band, e.g. see figure 8 (9) .  For reasons we do not understand, 
the spiral approaches the centre of the core and thereby affects higher and higher 
vorticity levels as time progresses. At t = 0 the $-profile is almost linear in an 
elliptical annulus around the centroid of the vortex. This implies a differential 
rotation, which contributes initially to the gradient steepening, but later on becomes 
very complicated. For example, higher contours sometimes rotate faster and some- 
times slower than the lower contours, a phenomenon associated with the A, 
oscillations. 

It is not known if there is an inviscid limit to the gradient steepening. Our 
simulations indicate only a numerical limit associated with finite resolution. 
Figure 10 shows the maximum gradient along four contours (W = 3, 5, 10 and 15) 
for the 25V calculation. Initially, for W = 3 and 5, the calculated maximum gradients 
vary smoothly with the arclength, but for t > 0.6 one observes small-scale modula- 
tions due to the finite resolution. The saturation of the maximum gradient a t  t x 1 .O 
for 0 = 3, we believe is due to inadequate grid resolution. The oscillations on V = 10 
and V = 15 are correlated with the A, variations. Calculations on 642 and 12P meshes 
yield the same phenomenon, except that the maximum gradient saturates earlier. 

5. Dependence on initial conditions and other parameters 
Our main example discussed above has an aspect ratio in the stable Kirchhoff 

regime. For S = 1 distributions with aspect ratios in the unstable Kirchhoff regime 
( A  > 3), a faster decrease of the aspect ratio is observed because more vorticity is 
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FIGURE 12. (a) Evolution of w for V(l,20,1.44,0.4) on a 12V mesh with v2 = 0 and v, = 5 x 
( b )  Evolution of w for V(0.5,10,1.44,0.4) on a 25~6~  mesh with vg = 0 and v p  = 0.3125 x lo-'. (c) 
Evolution of w for V(0.2,10,1.44,0.4) on 256* mesh with v, = 0.3125 x lo-'. The times are the same 
as in (b) .  The small overshoot contours in the core and ----, negative contours near the filaments 
are the result of v4 A p  dissipation. 
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FIGURE 13. (a) Evolution of -, A"(7.2, t ) ,  ----, A,&) and * * * * -, $,(7.2,t) for the initial state 
V(0.5,9.54,1.6,0.8) on a 12S2 mesh with v2 = 0 and v4 = 5.0 x lo-'. (Note #d is measured in degrees. 
Note A, is obtained from $ = -3.6, close to the extremity of the vortex.) ( b )  The vorticity field 
o at t = 2.5 showing the filaments. 

1 

FIQKJRE 14. Evolution of A"(3.2, t )  for the initial state V(0.2,6.68,1.6,0.8) on a 64* mesh with 
Vh = 8.0 x 10-6. 

shed into the filaments causing a greater value of $*. For example, for 
V(1,20,1.44,0.4), $d becomes as large as 180°, as shown in figure 11. It is interesting 
to observe that the first phase of the bulk relaxation still lasts approximately one 
half revolution, and that during this period A,(10) relaxes to 1.3, which is 
approximately the same value as in the main case. In  figure 12(a) we see that the 
filaments contain more vorticity than previously and the third phase of the relaxation 
is more evident. Note the secondary breaking ( t  = 3.75) and the complicated 
structure of the filaments. 

As we decrease 6 the initial vorticity distribution approaches the Kirchhoff 
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FIQURE 15. The evolution of (a) w ,  (b)  K and (c) $ for an initial V(1,20,1.6,0.8) distribution of 
o with y = 1/2 on a 12@ mesh with v, = 5.0 x lo-'. 
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elliptical vortex, for which the saddle points A,, A ,  and the inner separatrices i,, i, 
are outside the vorticity region. Hence the amount of vorticity initially shed into the 
filaments decreases with 6. Figure 12(b and c) shows the evolution of initial 
V(0.5,10,1.44,0.4) and V(0.2,10,1.44,0.4) distributions. Figure 11 shows how the 
contour dynamical limit is obtained as 6 tends to zero. However, the convergence is 
not uniform in time, because we are approaching an unstable Kirchhoff elliptical 
vortex. The evolution of these near tophat distributions highlights the reattachment 
of the filaments. The second column of figure 12 shows how parts of the filaments 
get trapped in the ghost vortices and W,. At t = 5.0 particles carrying low- 
amplitude vorticity accumulate near the stagnation points A ,  and A,. These particles 
are convected along the core near inner separatrices at t = 6.5. Later ( t  = 8.0) these 
particles are again shed into filaments along the outer separatrices. The slight 
vorticity overshoot (0 > wp) within the core and negative vorticity regions near the 
filaments in figure 12 (c) are the result of v4 4, dissipation. A detailed discussion of 
this minor effect will be given in the fourth paper in the series. The small4 
distribution, V(0.5,9.54,1.6,0.8), provides another comparison with contour dy- 
namics, see figure 13. Again we observe the aspect ratio levels out after slightly more 
than half a revolution. Owing to the weak filaments, $d never exceeds 1' in magnitude 
and therefore the first relaxation phase causes A, to decrease only to 1.6. However, 
this is a considerable difference from contour dynamics, and emphasizes the effect 
of weak filaments on the overall structure. Note, the correlation between small-6 and 
slow relaxation towards axisymmetry is due to the fact that Kirchhoff ellipse is a 
stable steady state for A < 3. 

In  the case of a very small 6, dissipation plays an important role during the first 
few revolutions. Initially no vorticity is shed into filaments for sufficiently small 
values of 6. However, the dissipation relaxes the gradients, thereby generating a 
growing perturbation on the steady-state solution. As soon as the perturbation is 
large enough to generate filaments the axisymmetrization follows the usual pattern. 
Figure 14 illustrates the influence of the dissipation on the evolution of 
V(0.2,6.68,1.6,0.8) distribution. For t < 4 diffusive mechanisms are operating and 
for t > 4 the inviscid axisymmetrization mechanism takes over. The larger dissipation 
of this run also causes the fine-scale oscillations to be suppressed. This observation 
supports our conclusion that the fine-scale oscillations are caused by asymmetries in 
the vortex core and not by the filaments, because the fine structure in the core is 
smoothed by dissipation while the vorticity in the filaments remains near the outer 
separatrices. 

5.1. Geostrophic vortices 
Geostrophic vortices also relax inviscidly towards axisymmetry as shown in figure 
15 (y = s). Again the driving mechanism is the departure of the vorticity field from 
elliptical symmetry - caused by filamentation. In  comparison with figure 8 (y = 0) 
we observe broader filaments and generation of negative vorticity, u = -A+. Also 
the filaments are closer to the core. These differences become more pronounced with 
smaller deformation radius (larger y).  

In  the absence of dissipation, the potential vorticity K = w + y2$ is convected with 
the flow, but the relative vorticity is not. The stream function is given in terms of 
the potential vorticity 

i r r  

where KO is the modified Bessel function of the second kind and zeroth order. 
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FIQURE 16. Evolution of -, A,(10, t ) ,  ----, A*( -3.2, t )  and * . * - * , q5* for the potential vorticity 
of V(1,20,1.6,0.8) with y = 2/2 calculated on a 128, mesh with v, = 0 and v, = 6 x lo-’. 

The axisymmetrization principle applies to contours of constant K ,  the conserved 
quantity. Figure 16 shows diagnostics for the contour K = 10 of the evolving vortex 
shown in figure 16. Cearly the axisymmetrization principle is valid. As compared with 
figure 3 (y = 0) we observe the same qualitative behaviour of the aspect ratios A, and 
A,. Note, there are no fine-scale oscillations in figure 16 and furthermore the higher 
contours of potential vorticity approach axisymmetry more closely after the first 
relaxation (at t = 1.25). 

The core of the K distribution is initially surrounded by a ‘skirt’ of low amplitude 
vorticity. Particularly, inside the regions Il and I,, (note the humps on the contour 
K = 4). This skirt of potential vorticity gives rise to the characteristic broad filaments 
seen at t = 0.5 through the convection in the corotating frame. In  the meantime the 
stream function changes only a little, therefore the o field also exhibits the broad 
filaments. During this time, remote particles in Il and g2 with low amplitude K are 
convected towards the core. Since the stream function changes little during this 
process, then negative values of w are generated near the core (see figure 15 column 
one at t = 0.75). 

It is crucial to observe that the streamlines are nearly elliptical and have a small 
aspect ratio. Hence the asymmetric part of the K-field consists mainly of o and the 
generation of negative o becomes important in the axisymmetrization process. In  
order to calculate the orientation of the streamlines we may as a first approximation 
replace K by w in (26). 

At early times the filaments and the negative o-regions both contribute to a 
positive q$d causing the first relaxation towards axisymmetry. At t = 1.25 the 
filaments have nearly the same symmetry as the elliptically symmetric core and the 
relaxation stops. A t  the same time the particles in I1 with the smaller K (corres- 
ponding to the negative vorticity) have passed A ,  and are approaching A,,  thereby 

6-2 
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giving an increasing contribution to a negative &. The convection of these particles 
close to core contributes to the rapid increase in A after t = 1.25. The filaments also 
contribute to a negative $d as they slowly move out of their symmetrical position. 
After t = 1.25, we observe A, increases while the aspect ratio of the streamlines is still 
decreasing. This causes the negative w to be intensified near the middle of the inner 
separatrices. 

Eventually, the negative w appears in the filaments and it becomes difficult to 
distinguish the net asymmetry. The positive and negative relative vorticity is almost 
uniformly distributed around the core at t = 3.0 resulting in a slow variation of A,. 
At t = 4.5 the core has elongated to A, = 1.2 and the convection in the ghost vortices 
again becomes significant. 

6. Conclusion 
In  this paper we have demonstrated that an isolated near-elliptical smooth 

vorticity distribution relaxes to axisymmetry on a circulation timescale as the result 
of an inviscid mechanism. We have stated this mechanism in an axisymmetrization 
principle (13). The breaking of the elliptical symmetry of the vorticity field drives 
the axisymmetrization. The evolution of the asymmetric vorticity field produces 
filaments and gradient intensification in the core and is explained in terms of 
streamlines in a corotating frame. 

The filaments have a dominant influence on the evolution of the vortex core, even 
when there is little circulation in the filaments. The reason is that only the asymmetric 
part of the vorticity field can deform the core and the filaments furnish most of the 
asymmetry. Note dissipative processes affect the vorticity amplitude in the filaments. 
However, their position and circulation are nearly unaffected. 

On the basis of the axisymmetrization results it seems reasonable to conjecture that 
all isolated stable singly-connected, spatially-smooth steady-state solutions of the 
Euler equations are nearly axisymmetric. 
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Appendix 

Let w(z ,  y) evolve according to 
Consider a vorticity field w ( x ,  y) periodic in the x- and y-directions with period 2x. 

a,w = [ ~ , A - $ - , A ~ ] w - u ~ ~ w - v a , w ,  (A 1 )  

(A 2) where 

and G is the doubly periodic Green function for Laplace’s equation in [0,2x] x [0,2x]. 

(u, v) = (a,, -ax) I:’ Jb 4 E I  11) G(x, y; E ,  11) 

In  complex notation z = z + iy, g = + iq we have 

(A 3) 
1 *  

G(z,g) =- X lnlz-[-2x(n+im)l. 
2 x  n, m--co 
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Assume that we add a uniform background wb to the vorticity field. This can only 
affect the evolution of w(x,y) through the velocity field (u,v).  The background 
contribution is 

rzn r2n 

Using Green's theorem we find 

due to the periodicity of G. Similarly we find vb = 0. Hence the background vorticity 
in the pseudospectral model has no influence on the evolution of the physical 
quantities. 
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